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We use the Pontriagin maximum principle to solve the problem of weight-opti- 
mal reinforcement of a shell acted upon by a nonuniform axisymmetric external 

load. When the problems of optimizing the constructional parameters and restric- 
tions are formulated, a class of solutions is always indicated and the optimal so- 

lution is chosen from this class. Earlier, the authors of [l] used the Pontriagin 
maximum principle to obtain the optimal distribution of material along the length 

of the shell under a nonuniform load. Below we solve a similar problem with a 
preliminary condition that the shell has constant thickness and transverse rein- 

forcing supports, 

We consider a semimembrane model of the shell, in which the axis of the frame is 
assumed to coincide with the median surface, and be inextensible. After separating the 
variables, the equation of stability yields 

The conditions of compatibility of deformations must hold at the points of the frame 
supports J .-y I,, I,,. . ., I, . Taking into account the fact that a passage across the frame 

is accompanied by a jump in the shearing and the longitudinal forces, we obtain the 
relations connecting the stresses and displacements in the form 

Here and henceforth we adopt the following notation : I, R and fi are the length, radius 
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and thickness of the shell, respectively ; E and E” denote the moduli of elasticity of 
the shell material and the frame ; I,, II and f* are the moments of inertia of the frame: 
D is bending strength and N” denotes the stress within the frame. The expressions for 

yr and yz were taken from [2]. 

Let us s$cify that the frame is rectangular (b X h) and write the relations (1) and (2) 
in phase coordinates [3] 

Yl’ -j/2, Y3. ? Y3 + “’ (~++)-L, 6 b/l !:y’ = j/4 - -J$- (/f20w--rL~) y,u (3) 

Y 4' = G4Y, (Y1 = %L, Y, = qh*, y, = cp,l”, y, = rpTl”‘) 

Here ci and ai are constants determined from (1) and (2), and u is a function describing 
the engaging of the frame in the work 

( 

1, z := I 
k 

u = 
0, x# I,(’ 

!iX=_1,2,...,?n 

We formulate the boundary conditions in accordance with the conditions of support, For 

a hinged support we have 
yl (0) = yl (I) = ?/3(oj = Y3 (4 = 0 (4) 

We require to find the values of b, h, 6 and I,< for which the condition 

I _: .\: (2;1R6 + bhu) dx = ruin (5) 

holds. 
0 

Let us use the formulation for the theory of optimal processes to study a process with 

movable ends and parameters, and fixed time. For such processes the usual maximum 
principle holds ‘,li air a+; a:r 

al:=w* i3Z - -a?,i, i=t,%...,P (6) 

,r(Y,t,u,x)~=~ fi$i? If (y, *, u, x) == nf (y, q?, “) 

i=l 

(ICI = SUP,ED 11 (y, *, “9 4), %I < 07 I#~ = const 

and the following relation is valid: 

ax == 0, p == 1, 2,3, o. : (b, h, 6) 

i=O 0 

We write the function H (y, $, u, x) for the problem under consideration 

$obh++(&+gT) 
-1 

#~-‘#~/lg~(~abh~--~)?I~ ‘4 
I 

From the condition that H (y, 9, u, x) = M (y, 9, x) we obtain 

since u = {i and q. < 0 $ = const 0 . 

Further, the additional donditions (7) give the relations 
Tn 

(7) 

(9) 
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Na = $mrh - $3 (I) i yl (Z,J $ azh3 = 0 
k=l 

(10) 

Ns = $obm - 393 (E) 9 azbh2 i yl (lk) = 0 

k=l 
(11) 

From (11) it follows that 6 = 0. Therefore, introducing the restriction & >, b, we find 

that (10) is replaced by the inequality N2 < 0 which is satisfied automatically when 

Eq.( 11) as well as the conditions that $,, d 0 and b = b* , all hold. Eliminating 

*s (I) 2 yr (+) from (9) and (1% we obtain the follow~g equation for determining A. : 

k 
(a$*@ - Qg) m - 6~~~~u~~*~2 = 0 (f3 

Substituting I&, from (9) into the condition (8), we obtain the following system of equa- 
tions for determining I, : 

393 (1) $ Yl (Ik) -@p + 93 (II) y1 (11) (n&h” - 03) -= 0 (13) 

k--l 

4h (&I Y, Uk) = const, k = 2, 3,. . .? m 

Since the conditions of the maximum principle for the type of equations considered here 

are necessary but not sufficient, the number m must be found by comparing several ver- 

sions of the computaional method. below we shall use the results of [4] and assume that 
action of a nonuniform load q’f (s) on the segment can be replaced by the action of a 

uniform load with its ordinate given by 
‘5 

9’ ($ - ‘,_,)-l 
! f (T) dx 

‘k-1 

Then the general solution of the initial system of equations (3) for the i - th segment 

will have the form 

or 
YIi (-z) = YJ U&.1) E;J t y, (l+) E, +- Ya (Ii-l) g3 -+- !J4 (h-1) g4 (14) 

I- 

where & is the Krylov function of the first or second kind, depending on the quantity a?&* 

Fl Qz 43 44 1 0 00 

a,*Ea EI 42 E3 0 100 

A, Liz 
ff,y, 51k”h 51 52 ’ B, == 0 y* 1 0 

a,*&3 a,4~a ak4E4 Ei --_I0 01 

Let us set [5] D (1) = 11 aij 11, i, i = 1, -, ‘TJ 3,4 and write the conditions of existence of a 
solution of the system supported by a hinge (14) and rigidly clamped (15) 

wJ33 - a14a32 r;= 0 

a,3a,, - c,4ff23 -= 0 

To find the forms g (x) we must determine y, (0) and g* (0). The constant Y% (0) can be 
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normalized, With a hinged support we have 

Y4 (0) = ma 
(16) 

Since the boundary value problem (6) is selfconjugate, the vectors y (z) and I+ (*) are 

identical, therefore for a conjugate system of equations the solution becomes 

i-l 

$i b) = 11 A,B,.~~ k) $ to), $ (4 = tlli4 t3, $3 (4 q2 (4, ql (41 (17) 
k--l 

Thus we have obtained the resolving system of equations (12), (13), (14) and (16) for 

determining the unknown parameters h, li and b 

fk (h, li, 6, q”) = 0, k = 1, 2,. . ., m + 1 (18) 

The nonlinear system obtained was solved using the Newton-Kantorovich method. 
The initial vector F = (6, I,, . . . . I,,,, h} was given, then in accordance with the scheme 
it was increased by the increment AF’ and the matrix 

A = II df,li)fi;: II, j, k = 1, 2, . . , m + 1 

computed. The corrections were calculated by means of the matrix operation 

A*F = 1 JI,,_~ 1-l in-’ 

where n denotes the number of the correction and p-1 is the residual column of the 

system fk = 0 at the (n - I)-th step. 

Such an algorithm can be used in the case when an a p r i or i assumption is made 
that the geometrical characteristics of all supports are identical. When the character- 

istics are different, then m functions of uk defined in the same manner as u , are used 
as the control functions 

bbkhk3 - u3) yl”k @), y4’ = un4y1 

/i 

The condition H = M is now transformed into an independent system of equations in 1, 

(20) 

Eliminating $,, from (9) and (ll), we obtain the following dependent system of equations 
for h,: IIL 

2 (a,blchk3 - n3) ?/I (I,) - 3n2bkh2w (IJ = 0, k : 1, 2, , m (21) 
k=l 

Thus in addition to the condition that the determinant (14) vanishes, we obtain a suffi- 

cient number of conditions for determining all unknown parameters. The resulting sys- 
tem can also be solved using the Newton-Kantorovich method. 

The weight of the optimal shell G was compared with the results obtained from the 
condition that the shell resists equally the general and the local loss of stability [S]. 

Table 1 (overleaf) gives the results of this comparison. Here 6” and G” denote, respec- 
tively, the thickness and the weight of the shell obtained according to the method given 

in [S]. 
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Table 1 

ii/f, 

I I 

(I = const 

q = q@e+ 

h = const 1 ’ 0.666 1 
h # const 1 0.89 0.89 
h = const 1 0.81 - 
h # const 1 0.89 1.3 

- 

1 
- 
- 

- 
s/so 1 111 I L”/G 

0.7 2 1.21 
0.61 3 1.4 
0.79 1 1.19 
0.7 2 1.37 
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In the present paper we analyze the fundamental static and dynamic boundary 
value problems of the theory of elasticity, for the case of random loads. We in- 
troduce and study various generalized solutions of these problems. The solutions 

either appear as generalized random functions (random distributions), or belong 
to the spaces of summable random functions analogous to the Sobolev spaces. 
These spaces were introduced in [l], and we make use of the imbedding theorem 
for the random functions proved in that paper to establish the conditions under 
which the classical solution exists. 


